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In connection with many problems of investigation of near-terrestrial space, interest has
increased greatly recently in theoretical problems and in actnal construction of satellites
which are oriented toward the Earth. In this regard, objects which are oriented by means

of a gravitational effect play a particularly large role. The principle of gravitational
orientation, already known at the time of Lagrange, is reflected in a number of interesting
papers devoted to the investigation of the conditions of existence and stability of positions
of relative equilibrium of a rigid satellite in an orbital system of coordinates attached to
its center of mass [1 to 3.

It is known, that the condition of optimal realization of a gravitational stabilizing
system leads to the requirement that the mass of the satellite be distributed so, that in
the position of equailibrium, in orbital coordinates the maximum moment of inertia lies
along the binormal to the orbit {1 and 2]. The stabilizing effect may be enhanced by the
use of stabilizers in the form of long bars with masses at the ends [s].

At present, long flexible stabilizers are already widely used in some satellites.
These stabilizers are formed by unrolling of the treated, prestressed metal ribbons, which
in their operating state have the form of lap jointed tubes. In view of the possible deform~
ability of the stabilizers, the need arises for investigation of the effects of the dynamic
phenomena, which accompany the deformation of the rods, on the spatial orientation of the
satellite.

Consideration of the effects of deformation may be specially important if, in addition,
use of some active system of damping and guidance abroad the satellite is contemplated,

A system of equations is presented describing the rotational motionr about its mass
center of a gravitational satellite, provided with deformable stabilizers.

The consideration of the dynamic phenomena which accompany the deformation of the
stabilizers is carried out by the methods of analytical dynamies.

1. Equations of the theory of relative motion applicable to the dynamics of a de-
formable body. The equations of motion of the structure of a satellite containing elastic
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Equations of rotational motion of a gravitational satellite 591

elements can, in the majority of practically important cases, be obtained on the basis of
the general equations of the theory of relative motion. The structure may be regarded as
a system of bodies whose position relative to some selected system of axes connected to
an absolutely rigid body may be specified by a finite number of generalized coordinates
(or, for a continuous medium, by a denumerable set of them) (4], pp- 426-436).

We shall attach to some point O of the
structure in its undeformed state a right
handed coordinate system x, x, x; which
pertains to this body, and we shall
describe its motion in terms of the velocity
of the origin V, and its angular velocity
vector @ {Fig. 1). The displacements of
the points of the deformable body will be
determined with respect to some specified
moving system of axes Ox, x, x,. At any
instant of time, the position of an arbitrary

point A of the body relative to the Ox; x, x,
system of axes, can be defined by the vector
FIG. 1 (L4l pp. 474-482)

OA=r+u (.Y

Here t is the vector for the point A, constant in the Ox, x; x, system, and u accounts
for the displacement of an arbitrary point from its initial position 4, to the position 4
under consideration, resulting from the deformation of the body only. The vector u is, in
general, a function of time and of the coordinates of the point 4, It can be assumed that
time enters u only through the parameters which serve as generalized coordinates, the
number of which is assumed to be finite and equal to N, i.e.

The position of the arbitrary point A of the body with respect to the inertial coordinate
system O’& & & cannow be given by the radius vector

Y =rp+r+u (1.2)

If the translational motion of the pody is given, then ry, will be a known function of
time ; otherwise, if the motion of the body is to be determined, 1y can also be determined
by generalized coordinates which specify the motion of the origin.

Expressions for the absolute velocity and acceleration of the given point of the de-
formable body, can be given in the form

V=V,+ox(r+u)+u*
W=V*+axVo+ax(r+u+ox(@xr)+ (1.3
+ @ x (® x u) + 20 x u* 4 u**

where 1*, and %% are the relative velocity and acceleration vectors of the point in
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the Ox, x, x, system due to deformation, and Vo* is the vector whose projections on the
Ox, x, x;axes are equal to the derivatives of the projections of the vector V;, on the same

axes.

The equations of motion of the deformable structure of the satellite in space can be
obtained either on the basis of the theorems on the rate of change of momentum and on the
rate of change of angular momentum of the structure taken about O, or as the Euler-
Lagrange equations for the quasi-velocities (Vi;, Vo, Voss @1, ®3 &3), which define
both, the motion of the point O of the body, and its rotation about 0. In vector notation, these
equations have the form

MIV** +eoxVi+ o' xpt+ox(oxp)]+
+ M@ xp"+ ox(0xp*)+ 20 x p*t 4 p***] = F
B°+86")e +80t+ex(® +06) o+ T*+eaxI4
+Mp+e)x[V%+ox V] =m®+ M°

(1.9)
(1.5)

where F is the vector sun of all external forces; m° is the vector sum of moments of the
external forces about O; M ° is the vector sum of the moments of the forces (including
reactive forces) arising from the guidance systems, and

8°=ESr-rdm—Srrdm (1.6

is the inertia tensor at the point O of the structure in its undeformed state, expressed in
terms of the inertia tensor relative to the center of inertia C with the aid of the relation

0° = 8% + M(Ep-p — pp) (.n

where p is the constant in the Ox, x, x; system radius vector of the center of inertia C of
the structure, i.e.

Srdm:Mp

where M is the mass of the entire structure.

0t = Z[ESu-rdm— %S(ur+ru)dm]+ESu-udm—-Suudm (1.8)

is the additional inertia tensor of deformation of the structure relative to the point 0
{here un, ur and ru are dyadic products of the vectors and F is the unit tensor) ; moreover,
in {1.4) and (1.5) the following notations for vectors are used:

I‘=S(r+u)xu*dm

(1.9)
S udm = Mp*, S u*dm = Mp**, S u** dm = Mp***

Here p* is the vector which defines the displacement of the inertia cénter from the
position corresponding to the undeformed state C to the position C* which corresponds to
the deformed state of the body. In all the relations given above, integration extends over
all manses distributed and concentrated) of the deformable structure. The equations for
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the generalized coordinates 9, which may be obtained as Lagrange’s equations, have the

form
d T, aT, * g dgp* (
PRSI, ] — w,\v e o 1.10)
dt dq,’ dq, 0“ M (Vo + ) dg,
1 a0t . ar d ar al‘)
— @ D — @ e — @ | g — =1,2,...,N
29 0, 0T 5 @ («dt Oq, g4 @ )
T*=%S *u* dm (11D

Here T, is the kinetic energy of the relative motion of the particles of the body due
to the deformations only. @ is a certain generalized force. The components which have
been separated out in the right-hand side of Equations (1.10) represent the generalized
forces correspouding to the inertia force of translational motion of the origin shifted to
the center of inertia of the system, and also to the rotational, centrifugal, and Coriolis
inertia forces on the body, caused by its deformation. The forces Qa are the generalized
forces of all the external forces (gravitational, aerodynamic, etc.) and of the internal
reactions (elastic and inelastic) arising during the deformation,

It would be possible to use Equations (1.5) and (1.10) directly in the following. How-
ever, when the vector u can be represented by a power series in the generalized coordinates

qq 180

N n o n
t a
u= 2 ¢ U (21,23, 75) + 5 22 9,9:U (21, 22, 22) (1.12)

=1 a==1B=1

then Equations (1.14), (1.5}, and (1.10) can be transformed somewhat, as was done in [5].

We shall give now these approximate equations, which were obtained under the assumption
that only small vibrations of the structure were being considered. In the equations, there-

fore, only linear terms in the generalized coordinates ¢ ,, were taken into account:

M{Ve* +toxVit o' xptox(@xp)l = (1.13)
N
—=F— 3} {g, [0’ xa® + 0 x (& xa%)] + 2¢,'0 x a® + a%g,"}
a=1
(1.19)

8.0 +ox8 0+ Mpx[Ve* +@xV] =

N
=m®+M° — D g, [2(A%-0" + 0 x A*.0) 4 a® x (Vo* 4+ 0 x V,)] —
« N N
— g, oA +oxG)— D q C*
Lo a=1

N N
> A =0, — (a“ + a‘qu) S(Vo* + o x Vo) +
=1

p=1

{1.15)
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N N N

+ o (Aa 4 E Qd8q8> (0+ 20 2 Fm;?qav_ o (Gm - :\3 G{-}aqs')
B=1 B=1 ) =
(x==1,2,...,N) o

In Equations (1.13) to (1.15) the notation of [5] is used:

at = SU"dm, ah = SU“Bdm, G* = er Utdm

=\ U UPam, GB“ =1 (v am, 1= (0P« U am
N (1.16)
=2 Z *9,+ E 2 Qg g A% = S [Er-U* — Yy (rU* 4 U%)] dim
x=1 a=1 B=r1
S EU*.UP — 1, (U*UP 4 UPU%) + Er U™ 1, (2 U - U*Rr)j dm

2. Equations of rotational motion of a gravitational

5 satellite with deformable stabilizers. We shall obtain the
equations of rotational motion of a satellite whose struc-
ture is assumed to consist of the basic rigid body S, {of
mass mg) and of the stabilizers S, and §,. The latter
consist of long inextensible elastic bars, carrying equal

4 concentrated masses m, at their ends. The bars are ar-
ranged symmetrically with respect to the xy~axis, are
rigidly attached to the basic body of the structure, and are

Yl presumed to be rectilinear in the nndeformed state (Fig. 2).

The results of launchings of some satellites on which
long bars were used indicate that, as a result of solar
heating the stabilizers, after unrolling, will take the shape

! of bent and twisted beams of open section, whose axes are

three~dimensional curves. However, it is hoped that in a
short time an engineering solution will be found to the

m, problem of minimizing the deflections of the axes of the
bars in their operating condition. Therefore, in what follows

Y31 we shall limit our consideration to small deflections of the

bars (small in comparison with their lengths) from their

FIG. 2 undeformed state, which is assumed to be rectilinear, Then
the stabilizer can be represented moderately well as a

homogeneous elastic beam executing free vibrations about an equilibrium position, which
may correspond to, either an undeformed state, or a slightly deformed one, depending on
the character of the external fields acting on the satellite. The torsional vibrations of this
beam can, of course, be neglected as a consequence of the large structural damping which
occurs at the lap jointed edges of the tube,

Let us orient the axis 0; 75; of the system of axes O Uyi Yai Yai along the bar 5;
{Fig. 2). The displacement vector u, of the point ¥11¥21¥/31 of bar S, resulting from the
flexural deformation, can then be represented in the following way, on the basis of [5]:
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n

;= (i cos 7 + igsin7) ) 5 9.9, (7,) -+ iz E o (05) +

a=1
+ (ll sin T — l'l cos T) [ ./11'7 (Pa (./31) nE }.} y2l(]n+a¢a’ (.'/31)] +
1 =t : o (2.1)
+ 5 (ixsiny — iy cos7) S S (29, § 0. ® 0, @t +
=1 ﬁ“- 0

g

+ Gurallnnn § B ©) 0y () dE]

where i,, i,, i; are the unit vectors along the axes CZ;X,Z3 of the satellite, y is
the angle of mounting of the bars, Qg (¥3;),and Pa (¥,,) are the normal modes of vibra-
tion of the bar S, in the planes ¥1Y/3; and ¥sYs;, Go and 9, 4o 8Te the systems of
generalised coordinates which correspond to these modes. In Equation (2.1), both terms
linear in generalised coordinates describing the deflection of the beam and the rotation of
its cross-sections, and quadratic terms describing the distortion of the bent bar, are taken

into account. Analogously, we have for §,

up = (— i, cos Y + iysin y) Z 7.79,* (U,,) + ia Z 9" pia®a® W) +
=1 =1

+ (i siny + iscos ) [ Z Y19 90 (Uy) + % U o Mt (y,,)] +

VU (2.2)
oy st iscesn) 3 3 [0.00," 0. @0, @+

a==1 f=)
Ys2

s § 97 O () dE]

From Equations (2.1) and (2.2) the displacement vectors of the end masses are:

U (ma) = (i1 cos Y + issin 1) D) .9, (L) + is Z Ty (L) +

+ 5 (hsiny —iscos1) é; g [ 2.9, Sw E e E)dE +
+ Gnralnig §«v &)y’ (&)t ] (2.9
ug (my) = (— i, cos7 + i3 siny) aél 2,70, (L) + ia é Tnsa¥e” (L) +
+ 7 (iasin T + s cos ) El E [q 95 S ?.* (€) @* (B)dE -+

(2.4)
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I
F Gutals V0.7 ()9, (B)dE |
0

In addition, the radius vectors of points of the bar Si with coordinates Yii Yai Ysi
are, in the undeformed state, determined by the expressions (Fig. 2)

(2.5)
ry=i(— Ry yncosy— Yar SInY) - dgyay -+ is (Ry + yusiny + Y31 COST)

re =iy (— Ry — §12008Y — ¥328in 1) + bayge + i3 (— Ry -+ ¥125in ¥ — ysp cos7)

In what follows, by assuming no difference in the nature of the vibrations of the bars
in the ¥1i Y3; and Y2 Ysi planes, we may consider fo simplicity that

?, (&)=, ) =0,* E)=v," () (2.6)
Using the notations of (1.12), we have
for S,
. L L. . , (2.7
U,* = (i cos v 4 i38in 1) @, (¥,,) + (Lisiny —iscos 1) ¥,,9, (¥,,)
U!’”x = igq)a (ySI) + (il sin T — i3 cOS T) qu}a&! (931)’ Ula’ el B U1n+a' B =0

Usy

U, = U™ ™8 = (i,sin v —iscos 1) | 0,/ (B) @, (B dE
for S, o

= (—ijcos7 4 issin 7) @, (y,,) -+ (i1sin 1 + izcos ) Y.9. Wso)

U™ = 1,9, (¥,,) + (ix8in T + i3c057) 4,0, (¥5,), U™ = U = 02.9)

Ysz2

Up™ = U™ ™ = (i siny + s cos ) | 9.’ () 9, (B) d&
]

In the calculations of {1.16) for the equations of motion {1.14) and (1.15), the inte-
gration may conveniently be carried out with respect to the dimensionless variable

=y;;/L, where L is the length of a bar. As a result, we have
a,* = me (i; cosy + igsiny), as® = m®*(— i, cos 7 4 i3sin 7)
a,%f = a," B = m*aB L (il siny —izcosy), a™t* = m* 12,

a,%F = agn+@. "B = m B L7 (i;siny + izcos ), & "B=a™*P =0

m® = myn* -} MmeWq (1), m o8 = mymeP - myl®®
) i £} B,_
AuB - AiaB —_ A{Ha‘ n+8 — mlA*aB + mchu (1) q)g (1)’ A‘u n+p = Ai'n+¢ =0
Gia — gdis, Glﬂ-Ht —_ itgl’n-ka — i3g2n+&, G nta _ llgl — i3g2n+¢

g™t = g,% = m; (Rin* -+ Leostn,*) + ms (R + Leosy) 9, (1)
ga™t® = go* = my (Ron® + Lsintn,®) + me(Ra+ Lsin M) ¢, (1) (2.9
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ga — COS’{gﬁ + sin nga, Piaﬁ o Fima, n+f 0

0™ — A% (Geosy —ising),  Te*™P = — 4% (cosy + iysiny)
G = GIMB’ e = G“Biz, sta = CMMB,?Wx = Gaaiz
G = m*“BL‘1 (Rysiny — Racos7)
GMP =R = A (i3 cos y — iy 8in 1)
G = nﬂ-*ﬁ- « _ AR (izcosy + i, sin7)
Ag® = igisAn® + inigAn® -+ daigAss® — (s + fsl1) Ass” (2.9)
A = — (i + i) Ars™® — (isa + Tais) Ase™

Ag® = — i1t Ay® — lalpAng”™ — gz Ags® — (s + dali) Asg”
A = — (igdy + igha) Are™™® + (igly -+ Tais) Ags™™™
Ay” = sinrg®, Ags® = — 03783, Ags® = 5 (cosg:* —sin78s%)
Ag® = m® (Rysiny — Rycos¥), A= — -—1,; ga", Agg"™* == '}? g.*
Ql“v’”g = Q,"* Boe o - A®® [(iyig + lal1) cos 7 + (isls 4 lsia) sin 7]
Qs n+B _ Q™ B _ __1; AP [(iyia + ioly) c0s ¥ — (lais -+ isia) sin 7]
Ql“ﬁ = 1,i;01,** + L,isQ 21 + 1510 3a”F — (inds + i3ha) Q13¢a
Q2™ = 1111 Q1™ + 1aiaQua™ + iais Q3™ + (hais -+ Iks) Q1™
lea, np _ ililqnn—m, n+p + igngnRM’ n+B 4 isis‘?ssmu! B

— (s -+ fghy) @y " P

0™ ™ = i 01u™* ™ L 141200 ™ L igigQsr™® ™ L
F (s - ighy) Qug™® ™
Qu™ =sin? 1A —cos1d,*®, Qs = cos?yA* —sin7d,*?
Qn™® = 4*® —sinydy*® — cosy d,**
Q5™ = sin cosYA™® + - [cos1ds™ + sin v d, ")
anm' niB __ Aag —cosy d;aB, 083n+a, n+f Aaﬂ —sin ,{dzaB
Qu"* ™ = —sinyd,*® — cos 7 d,*?
Q" MR = -;- [cos 1 do* + sin v d,*?]
d,*® = L1 [my (Rym + Lcosym®®) + mq (Ry+ L cos 1) 1]
™ = L [my (Ram®® - Lsinym®) + my (Ry + Lsin7) I°°]

where the following notations are used for integrals:

1

1 1
ne = Sq)“ (®ds, npo= S“"‘Pa (s)ds, 1* = Sq:a' (s)ds
0 0 0 (2.10)



598 T.V. Kharitonova

1 1

A*aﬁ — S(p“ () g (s) ds, 1 = S(Pa' (s) ‘PB' (s)yds

0

1 8 1 S
mes =\ ds S(pa' @9 a5,  m#=\sas\e, (5)g, (@) ds
0 0 0 0

Moreover, in the computation of (2.9) the terms, in which the rotations of the cross
sections of the stabilizer were included were neglected.

From Equations (1.14) and (2.9), the equations for rotation of the satellite about its
center of inertia C referred to the x, x, x; axes, have the following form:

Ao, 4+ (C - B) 003 + 2@, 2 Au“ya —2 (0)2. — 0;03) 21 A12n+m35n+a o
a=1

a==

— (03" + ©109) D A’ za A+ 20003 21 (Ags™ — An®) y, +
a=l1 [ £
4+ 2 (02 — 0g?) ) A"y, — 21 81, + 20 21 Ay, —
@==1 Q= a =
— 05 3 A" + £ 2+ Ves oV o — oVar) X m@nia —
23 =

k)
. C
—siny (Vs + 0Ver — 0V o) 2 mzg = miC + M, (2.1D

[ 0 %
By + (A — C) 0,03 + 207 X Azza!/a — 2 (01" 4 0g03) 21 A1 T —
a=1 a=.
— 2 (05 — @:02) 2 Agg™ "y, - 20,0 21 (A" — A3y, —
a=1 a==.

n n n
— 2 (0,* — 5?) 2 Ap'ze Ex g%a" + 20, azl An'y, —
ax=1 == =

— O a:gl (A" — 22°) Tara — @5 :gl (As™™" + 1) Ynsa + (2.12)
+sinT (Vor + 03V ¢s— m3ng):§1 mox, —— COSY (V‘cz + @,V s — @aV ¢y) X
X agl mey, = my¢ + M,
Cag' + (B — A) 0,009 + 2005 él Ags’y, — 2 (@, — waw3) 21 Ay zy —
— 2 (@ + 0103) i A"y, + 20,09 21 (Ap" — ALy, +

a=)

k13 n n
+ 2 (05 — 02 2 A Tnia— 2 82%Tnra + 208 2 Ass’y, —
a=1 a=1 a=1 (2-13)
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— @3 2 (23\11“ — é"a) T, — (V‘m + @2V g3 — ®3V62) 2 Mm*ZTnia -+
a=1 a=1

"
- c
+cost (Vs + 05V o1 — 0V ¢s) 2 mty, = mzC 4 M
«m=]
In Equations (2.11) to (2.13), the following notation was introduced for new generalised

coordinates:
(2.14)

Ta=q, + qa*’ Tnia == Quiq + qn:a’ Yo =90 — ga*‘ Ypea = Tnsa ™ q;u

In scalar notation, Equation (1.15) has now the form

3 457 = @, + 0, —2siny (Vi + ¥ os —anV ) ms —

n
. . i
—siny Ve, + @V ez — 03V ce) T 2 m,*Pxy —
B=1

—cost (Vs + o Vee — @V e1) Z m 2Py, — 4o103As5" — 2¢%00" 4
Lo

+~ 2 {(mleuQB -+ mzzqzzaﬁ -+ 0)32033#) Zg — 20)103013“35’3] —

— sin 7 (0 + ©a03) 2 AP Znsg -+ €05 7T (03 — 0,00) 2 A%y Ynip T

+22A°‘B[cos'{wy ; —SinT oz, 2] — o G**
=1 Fnep Fnepl = O3 a§1 2 (219

2 A%y =Q,—Q.* —2cost (Vi + @iV o5 — 05V c2) m* —
—siny (ch + @2V gy — ﬁf’sVCz) y m* ap Yg —COSY (VCa; + o,Vey —

-~ m2VCI) BZ m,Bxg 4 2 (0,20, + 02A%" + ©52A4" )+ 2g:%05" +
==1

n
+ aé [(0:2Q11"* + 09*Qn"® + 052Q5:") y, — 201030152, ] +
hi n
T cos T (05— o109 E A% zp.p —sin T (01" + 030) 92 A%y, o+
g

n
+2 g; A% [c08 TwsZnss — SiD TOLY,, 5] — 0f' s§1 Gz,

a§1 A%z o= Q.+ Q0 —2m® (Ves + 0¥ ey — 0,V gg) —
—sin7 (Ver + @2V es — 05V ca) % 2 m, %Pz, +
B=1
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{2.15)
-+ cosy (ch + &,Ve, — (02V01) 2 m® yn+B + 2¢5* (03" + 0109) +

n
+ 2 [(wlzqurwa. n+8 + m2022n+a. n+g +m32033n+a,n+9) Tnsp —
B=1

— 20,0305 nBy, Yol —sinT (0 + Wgtg) 2 A%®zg 4+ cos T (05 —

n
. B . . 8
— ©,@9) 92-]1 A“Bya +2 g} AP [sin Y©.Zp ——cos'}’m:;yg ] — 2 Bgl c* Ynsp

n

n
. 1
) Ay, = Qe — Qi+ 0087 (Vs o+ 0V or — 0V ) - 2 7 Pnin—
g=1

—sinY (V01 + @V g — (Dchz) 2 my* ZI,HB + 2g,% (07 — 03003) -+
+ 2 [(wng nta, n+f —{—(DBQ n+a, nt+p +a 2Q n+a, n+B yn+p
—20,05Q13" " "B sl 4 €OS T (3 — ©103) 2 A*zs —sin v (0, +

+ D903) 2 A%y, + 2 2 A% [sin Yo,y — €08 T0Tg) —©7 2 G%rnp
(a=12,....7n)

Thus we have obtained a system of equations, which describes the motion of the de-
formable satellite as a system with a finite number 4n + 3, of degrees of freedom (N = 4n),
In Equations {2.11) to (2.13) the component of the vector m¢ representing the principal
moment of the gravitational forces acting in the central field of spherical Earth on the de-
formable system of the satellite, is determined by the approximate relation {6]

myC ~ — S(r+u)xk*dm —3 L k. 8%+ 8™ xk*  (2.16)
Toc Toc

where 1~ is the distance between the center of attraction O and the point C, p is the gravita-
tional constant, and k* is the unit vector in the direction of 7y, defined by

* = 8,1, + O4is - dsi3 (2.17)

Taking the expression (1.12) for u into account, we have, according to (1.16)

N
m okt x (rdm — 3tk 0%kt ok x S ang, —

oc r(_)C rﬁC o« =1 (2.18)
N
—6-Ek*. A%, xk*
OC & ==}

For the problem under consideration, we have from (2.18) the following expression for

the projections of m g the axes %, x;%,:
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m, (& = 3 € — — B) 8,05 + £ 2 m®* [by8in Y2, — 83 Znsal —
OC OC a=1
n e d
— 6 —!,'p:— >\ [8285 (A" — Ass") Y, + 0182Aus Za +
0C a=1
4 (8 — 857) Aas™ Yo — OibaBas™ "Tnsa |

P o | 1 T " =
me® =3 —— (4 —C) 883+

- 6 2 [8:85 (Azs” — A )ya + 8583A12" “Tnia +
OC a=1

+ (02 —88) Aus"Ta — 830",

n -
mg® =3t (B — A) 88 + 2 me [— 83.¢05 7Y, -+ :Znsa ]| —
OC OC a=

— - 2 [ala,, (An® - As®) ¥, + 8:0sAas™ Yo +

rdc a—1
4+ (8,2 — &5%) A" *Tnia — 53‘531\13“37:]

The generalized forces in Equations (2.15) can be represented as
Qa=Q:+F“+(D“ {a=1,.., N=4n) (2.20)

where QF, F, and F,, and ®_ are the generalized forces due to the external forces, the
elastic reactions, and the inelastic reactions of the bars.

The generalized forces due to the external forces (particularly to the gravitational
forces) can be obtained as the coefficients of variations of the corresponding coordinates
in the expression for the virtual work done by the external forces which resulted in the
virtual displacement Su of the points of the body only as the result of deformations of the
structure. The virtual work of the gravitational forces over the displacement Su is deter-
mined by the approximate expression

éA(g)z——%S[i 3r+u k*]k* 6udm~———&(r+u) dudm (g,97)
rac Toc

Since, by (1-12)
du = Z U%dq, + g 5.] U*q,8q,

we obtain from Equation (2.21), the following expressions for the Q(‘f) (a=1,2, .., N),
taking account only of the terms which are linear in the generalized coordinates ¢ _:

N
Q (g)z . _f“'_'k* la% + aasq +
: Toe [ B§1 F } (2.22)
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3 b\ a 5
+ 35Nk U e 3 U kg, ]+
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; n N
+ Bs_‘l 7, (U - k*) (UB k*)} dn — OC S [r . (Uu + sé}l Uﬂ3q5> “{‘BZ_’:J‘ AanB]dm

On the basis of (2.22), we have in {2.15)

n
QO+ Q0= —F {Zm“sin 18 -+ - 3 m, % (sin 18,25 — cos fragyg)] +
B

oc

=]
+3 5 { — (@38, 2 sin 1 4 d, %82 cos 1) zg -+ 8,02 (d2™* cos T +
OC g=1

+ d,**sin 1) ¥+ A% {(612 cos®r -+ 84%sin?y) z, + 28,83 cosysin Ty, +

+ 83 (8, 08 1Y, + B30 12 0) [} B — 3 QP +

oC B=1
+ 66163 (COS Ygla —sin Tg%“)} (2.23)
0 — Q= — Pm"‘ cos T8y -+ 4 2" m B (sin 18,y — c0s 75z, )] +
0(’ B
4+ 3 B 2 {..,. (d°* 8.2 siny + d,**85 cos 1)y, + 8.0 (d2** cosy +
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+ d.*® siny) xg + AP [(512 cos? 7 -+ 88 sin® 1)y, + 28,8; cos Y sin Yz, +

n
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oc 8 =1

— 8,2¢08782%) — 2 (R siny — Rgcosy) m“]

. ' 1< .
Qned® + Q@ — A 2oty - ) P (i 7017, — 008 Tl g) -
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T %? §.2siny do® -+ 8,2d,*®cosy) 7, , -+ 6,85 (cosy do™F +
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-+ 3 t E {"— (612 sin i d2as —+ 632 cos Y d[aa) yn+s -+ 6163 (dgaﬁ Cos 17 b

3
r_
OC B==1

+ d1ua sin ’r) In4p + ‘45962 [6),(}05 TxB + 63 sin TyB + 62yn+51} -

n
— rTL':_ [ Z sz“aym — 66«36381“]
oc f=1

It should be noted that in Equations (2.11), (2.13), and {2.15) the inertis effects
due to the translational motion of the body of the satellite are equilibrated by the compon-~
ents of the moments and generalized forces due to the action of the gravitational forces,
which depend on the displacement of the center of inertia of the structure of the satellite,
caused by its deformation,

The analytic determination of the corresponding generalized forces due to all the other
external forces (e.g., aerodynamic and magnetic forces, etc.) acting on satellite of complex
configuration, requires specific knowledge of their form and structure, and is not treated in
the present article,

Let us turn now to the determination of the generalized forces F  due to the internal
reactions of the deformed stabilizers. Since the generalized coordinates g introduced
above are measured from the natural state of the body, the expression for the potential
energy of the elastic forces can be represented as a quadratic form in the variables 4],
and for this problem is determined by the expression:

1 n n . . * *
II = - 2 ﬁZ cab (Qan + q'n+aqn+9 T qa*qﬁ* + Tns “qﬂ*s) (2.24)
a=1 p=1
In (2.24)
EJ :
*f =75 Sq)a" () @," (s)ds (2.25)
[

where £ is the modulus of elasticity of the material of the bars and J is the moment of
inertia of transverse cross-sections of the stabilizers.

Then, in (2.15), the components of the generalized forces due to the elastic reactions
are equal

n n
FodFo* = — BZ cBzg, Frya+ Fria = — 2 c*Bxnip
=1
n

B=1
n
" .ot 2.26
Fa—-—Fa*:—-EC“ByB, ['n+:—“]'n+u.:_zcaﬁyn+5 ( )
B=1 B=1

where the coefficients ca'B can be calculated if the modes of vibration of the stabilizers
are known.

The terms @a in (2.20) are very important, since they determine the character of the
damping of the free vibrations of the stabilizers. The generalized forces @aare determined
from the internal damping in the material of the stabilizers as they deform and by the
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structural damping. It is possible to use the basic hypotheses which are usually employed
in the description of internal damping arising in the vibrations of elastic systems [6], in
order to determine these forces analytically. However, it is easier to make use of experi-

mental data on the determination of the decrements of the vibrations, if these are available.

The projections of the vector @ which occur in the system of equations of motion of
the satellite are easy to determine if the following additional coordinate systems are
introduced:

1. An equatorial coordinate system O0F;E,E;, with origin at the center of the Earth O,
the axes OF,E, lying in the Earth’s equatorial plane, and O&, being directed along the
axis of rotation of the Earth towards its North Pole (Fig. 3).

FIG. 3 FIG. 4

2. An orbital system of coordinates Cz;z,z5, which moves with the center of
inertia C of the satellite and is formed by the radius vector ryy, Cz, perpendicular to the
radius vector, lying in the plane of the orbit and positive in the direction of motion of the
satellite, and by the binormal to the orbit Cz, (Fig. 3).

3. Some auxiliary axes Cz;*z,*z,* ( moving with the center ofinertia of the satellite)
which coincide with Cz,z,2; axes of the structure when the axis of symmetry x; of the
body is oriented in flight in the direction of the axis Cz,, and which are rotated with
respect to the C2,z,z;5, axes when the axis of symmetry of the body %, is oriented in the
direction of the radius vector r;~ (the axis Cz,) or in the opposite direction (Fig. 4).
Depending on its structural arrangement and purpose, either orientation is possible for a
gravitational satellite. If the orientation of the axes Cz*2,*z;* with respect to the
orbital axes is determined by the three angles: i/ -the pitch; #-the jaw; and @ -the roll
(Fig. 4), and if the elements of the transformation matrix between the axes Cz*z,*z,*
and Cz;2,23 and the direction cosines between the axes Cz*z,*z* and Cz z,2,

are given by the tables

‘ 2 } Zg $ Z3 l Al ‘ g , X3
z* o 12 A3 x* | an aiz a3 (2.27)
z* oy Q2o g ¥ an og sy

rg* Clay g Olag rz* | am ass ag
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then in Equations (2.11) to (2.13) and (2.15)

(07) an an any ;o o == @' - Pisind 4 QpF
(“’z) - ("m axn asz) (“’”) . o =0"sing 4y cos § cos @ + Qu

o asy Gzg dsz/ \wg* 0g* = 9" cos ¢ — ' cos ¥ sin @ + Q3*
di .. (2.28)
Q* s 2 disy ;O Q== =p sinu 4-Q'ginicosu
(Qa*) = (az; o 573 0023) (Qza) , Sp=o0Y4v 4-Qcosi
Qq* O3y Osz %a3/ \Qys )

di s
zaz-a,?coszwﬁ-&z sinisinu

Here the generally accepted notation is used: {1 is the longitude of the ascending
node of the orbit of the satellite, i is the inclination of the orbit, u = o +vis the argu~
ment of the latitude, ot
satellite.

ig the longitude of the perigee, v is the true anomaly of the

In Equations (2-17), (2.19), and (2.23) the quantities 5£ are determined as

8 an Gz 4y /%18
(62 ) = (312 azz asz) (a‘ﬁ) {2.30)
8s O3s

Qi3 g8 483

on the basis of Equations {2.27) and (2.28).

If a gravitational satellite is provided with a special guidance or damping system, the
equations of motion (2.11) to {2.15) must be supplemented by suitable differential equations
which describe the process of guidance and dissipation of energy.

In the present article equations of rotational motion are given in orbital coordinates,
for a satellite provided with deformable gravitational stabilizers. The deformations of the
rods are presumed to be small in comparison with their lengths and are determined by a
denumerable set of generalized coordinates. The equations which have been presented
make it possible to solve a number of interesting problems in the dynamics of gravitational
satellites.

Equations (2.11) to {(2.15) permit the investigation of the effect of the motions of the
end masses of the stabilizers and of the distributed mass of the stabilizers themselves, on
the dynamics of a satellite, if the particular modes of vibration of the rods are specified,
and the possibility of non~ideal attachment of the stabilizers to the satellite is accounted
for. The effect of deformations of the stabilizers occurring as a result of solar heating of
the structure [7] on the dynamics of the satellite may also be investigated. It is possible
to estimate the stability and accuracy of orientation which can be expected from a passive

gravitational satellite with flexible rods under the effects of external forces on the satels
lite.

A class of problems of special interest deals with the stability of the operation of
active damping and guidance systems on a gravitational satellite when the stabilizers
deform. The investigation of such problems is simplified considerably, if small vibrations
of the satellite are examined in orbital coordinates and, if consideration of the deformations
of the rods is limited to only the lowest modes of vibration. For instance in [8] an investiga-
tion is carried out of plane vibrations of a gravitational satellite with flexible stabilizers
under the reactive moment of a preliminary damping system,
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