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In connection with many problems of investigation of near-terrestrial space, interest has 
increased greatly recently in theoretical problems and in actual construction of satellites 

which are oriented toward the Earth. In this regard, objects which are oriented by means 

of a gravitational effect play a particularly large role. The principle of gravitational 

orientation, already known at the time of Lagrange, is reflected in a number of interesting 

papers devoted to the investigation of the conditions of existence aud stability of positions 

of relative equilibrium of a rigid satellite in an orbital system of coordinates attached to 

its center af mass [I to 31, 

It is known, that the condition of optimal realization of a gravitational stabilizing 

system leads to the requirement that the mass of the satellite be distributed so, that iu 
the position of eguailibrium, in orbital coordinates the maximum moment of inertia lies 

along the binormal to the orbit [l and 21. The stabilizing effect may be enhanced by the 
use of stabilizers in the form of long bars with masses at the ends [3]. 

At present, long flexible stabilizers are already widely used in some satellites. 
These stabilizers are formed by unrolling of the treated, prestressed metal ribbons, which 
in their operating state have the form of lap jointed tubes. In view of the possible deform- 

ability of the stabilizers, the need arises for investigation of the effects of the dynamic 

phenomena, which accompany the deformation of the rods, on the spatial orientation of the 

satellite. 

Consideration of the effects of deformation may be specially important if, in addition, 
use of some active system of damping and guidance abroad the satellite is contemplated. 

A system of equations is presented describing the rotational motion about its mass 

center of a gravitational satellite, provided with deformable stabilizers. 

The consideration of the dynamic phenomena which accompany the deformation of the 

stabilizers is carried out by the methods of analytical dynamics. 

1. Equations of the theory of relattve motion applicable to the dynamics of a de- 
formable body. The equations of motion of the structure of a satellite containing elastic 
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elements can, in the majority of practicalIy important cases, be obtained on the basis of 

the general equations of the theory of relative motion. The structure may be regarded as 

a system of bodies whose position relative to some selected system of axes connected to 

an absolutely rigid body may be specified by a finite number of generalized coordinates 

(or, for a continuous medium, by a denumerable set of them) ([4], pp. 426-436). 

We shall attach to some point 0 of the 

structure in its undeformed state a right 

handed coordinate system x1 n, x, which 

pertains to this body, and we shall 

describe its motion in terms of the velocity 

of the origin VO and its angular velocity 

vector o (Fig. 1). The displacements of 

the points of the deformable body will be 

determined with respect to some specified 

moving system of axes Ox, x1 x,. At any 

instant of time, the position of an arbitrary 

point A of the body relative to the 0x,x,x, 

system of axes+ can be defined by the vector 

FIG. I (141, pp. 474-482) 

OA=r+u (1.1) 

Rere c is the vector for the point A, constant in the OZ, X; X, system, and u accounts 

for the displacement of an arbitrary point from its initial position A, to the position A 

under consideration, resulting from the deformation of the body only. The vector u is, in 

general, a function of time and of the coordinates of the point A. It can be assumed that 

time enters u only through the parameters which serve as generalized coordinates, the 

number of which is assumed to be finite and equal to N, i.e. 

The position of the arbitrary point A of the body with respect to the inertial coordinate 

system 0 ’ 6 & & can now be given by ihe radius vector 

9-l = r,, + T + u (1.2) 

If the translational motion of the nody is given, then t, will be a known function of 

time ; otherwise, if the motion of the body is to be determined, r, can also be determined 

by generalized coordinates which specify the motion of the origin. 

Expressions for the absolute velocity and acceleration of the given point of the de- 

formable body, can be given in the form 

w=Vo*+oxV*+o*x(r+u)+ox(oxr)+ (1.3) 

+Wx(OxU)+2mxu*+u** 

where u*, and a** are the relative velocity and acceleration vectors of the point in 
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the Ox, x, x1 system due to deformation, and V$ is the vector whose projections on the 

Or, x2 xraxes are equal to the derivatives of the projections of the vector Ye on the same 

axes. 

The equations of motion of the deformable structure of the satellite in space can be 

obtained either on the basis of the theorems on the rate of change of momentum and on the 

rate of change of angular momentum of the structure taken about 0, or as the Euler- 

Lagrange equations for the quasi-velocities @‘or, Vo2, voo, 91 I, 0 %, IB s), which define 

both, the motion of the point 0 of the body, andits rotation about 0. In vector notation, these 

equations have the form 

M[Vo**+oxVo+o’xp+ox(oxp)l+ 
+ M [a’ x p+ + o x (o x p’) + 20 x p*+ + p**+J = F (1.4) 

(8” + W’).o’ + W-+*0 + ut x (W + W+).w + r* + 0 x r + 

+M(p+p’)x [V*o+oxVo] =m”+M“ 
(1.5) 

where F is the vector sop of all external forces; m” is the vector sum of moments of the 

external forces about 0; &‘” is the vector sum of the moments of the forces (including 

reactive forces) arising from the guidance systems, and 

W=El xerdm- rrdm s (1.6) 

is the inertia tensor at the point 0 of the structure in its undeformed state, expressed in 

terms of the inertia tensor relative to the center of inertia C with the aid of the relation 

t3”=eC -j-M(Ep*p-pp) (1.7) 

where p is the constant in the Oz,x,z, system radius vector of the center of inertia C of 

the structure, i.e. 

s 
rdm=iWp 

where M is the mass of the entire structure. 

is the additional inertia tensor of deformation of the structnre relative to the point 0 

(here UU, ur and N are dyadfc products of the vectors and E is the unit tensor) ; moreover, 

in (1.4) and (1.5) the following notations for vectors are used: 

r= S(t+u)xu*dm 

s s u* dm = Mp*+, s 
us* dm = Mp**+ (1.9) 

u dm = Mp’, 

Here p+ is the vector which defines the displacement of the inertia c&tter from the 

position corresponding to the nndeformed state C to the position C+ which corresponds to 

the deformed state of the body. In all the relations given above, integration extsnds over 

all maasss distributed and concentrated) of the deformable structure. The equations for 
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the generalized coordinates q,, which may be obtained as Lagrange’s equations, have the 

form 

(3=1,2,...,N) 

(1.10) 

(1.11) 

Here T, is the kinetic energy of the relative motion of the particles of the body due 

to the deformations only. Qois a certain generalized force. The components which have 

been separated out in tke right-hand side of Equations (1.10) represent the generalized 

forces corresponding to the inertia force of translational motion of the origin shifted to 

the center of inertia of the system, and also to the rotational, centrifugal, and Coriolis 

inertia forces on the body, caused by its deformation. The forces Q, are the generalized 

forces of all the external forces (gravitational, aerodynamic, etc.) and of the internal 

reactions (elastic and inelastic) arising during the deformation. 

It wonid be possible to use Equations (1.5) and (I.10) directly in the following. How- 
ever, when the vector u can be represented by a power series in the generalized coordinates 

qa, i.e. 

then Equations (1.14), (I.S), and (1.10) can be transformed somewhat, as was done in [S]. 
We shall give now these approximate equations, which were obtained under the assumption 
that only small vibrations of the structure were being considered. In the equations, there- 

fore, only linear terms in the generalized coordinates q, were taken into account: 

&f [vo”* i- oxV~+w’xp-/-wx(wxpfl 

N 

=; F - 2 (q, [o’ x aa + o x (co x ad>] $ 
a=1 

= (1.13) 

2gko x aa + aaqa”} 

(1.14) 

e)“.o~+wxe”*o+Mpx[v,*+wxv,] = 

N 

= m”+M”-- 2 ~,[2(A”.o”+oxha.o)+aax(Vo*+oxVo)] - 
a=1 

N N 

a=1 a=1 

i A@QB” 
&I===1 

= Q, - (a= + -$ aapgg) . (vo* + W x vd + 

p-1 (1.15) 



In Equations (1.13) to (1.15) the notation of [5] is used: 

aa = U"dm, s aafl = VP dn?, c Gaze 1 r x U”dm 
a. 

FIG. 2 

2. Equations of rotational motion of a gravitational 
satellite with deformable stabilizers. We shall obtain the 

equations of rotational motion of a satellite whose struc- 

ture is assumed to consist of the basic rigid body Se (of 

mass no) and of the stabilizers S, and S,. The latter 

consist of long inextensible elastic bars, carrying equal 

concentrated masses m, at their ends. The bars are ar- 

ranged symmetrically with respect to the x;,-axis, are 

rigidly attached to the basic body of the structure, and are 

presumed to be rectilinear in the undeformed state (Fig. 2). 

The results of launchings of some satellites on which 

long bars were used indicate that, as a result of solar 

heating the stabilizers, after unrolling, will take the shape 

of bent and twisted beams of open section, whose axes are 

three-dimensional curves. However, it is hoped that in a 

short time an engineering solution will be found to the 

problem of minimizing the deflections of the axes of the 

bars in their operating condition. Therefore, in what follows 

we shelf limit our consideration to small deflections of the 

bars (small in comparison with their lengths) from their 

undeformed state, which is assumed to be rectilinear. Then 

the stabilizer can be represented moderately well as a 

homogeneous elastic beam executing free vibrations about an equilibrium position, which 

may correspond to, either an undeformed state, or a slightly deformed one, depending on 

the character of the external fields acting on the satellite. The torsional vibrations of this 

beam can, of course, be neglected as a consequence of the large structural damping which 

occurs at the lap jointed edges of the tube. 

Let us orient the axis Oi ySi of the system of axes 4 yri &< ~33i along the bar Si 

(Fig. 2). The displacement vector u, of the point y~ly~t.Y~r of bar St resulting from the 

fiexural deformation, can then be represented in the following way, on the basis of [5] : 
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(2.1) 

where i,, i,, i, are the unit vectors along the axas CZ~C?Z~Z~ of the satellite, y is 

the angle of mounting of the bars,Cp= (Y&,and 9.~ (&r) are the normal modes of vibra- 

tion of the bar S, in the planes ~,~y,t and ye&al, qa and q, +a are the systems of 

generalised coordinates which correspond to these modes. In Equation (2.1), both terms 

linear in ganeralised coordinates describing the deflection of the beam and the rotation of 

its cross-sections, and quadratic terms describing the distortion of the bent bar, are taken 

into account. Analogously, we have for S, 

u2 = (- il cow + i3 sin r) i q,*9p,* (y,) + i2 i 4*n1+119a* (y,,) + 
a=1 a=z 

From Equations (2.1) and (2.2) the displacement vectors of the end masses are: 

+ 4n+a%+#l oi 9,’ (El It,’ (E) ‘!i] 

u2 (m2) = (-- 4 cos r -I- i3 sin rf i q,*qp,* (L) + h i qnfa$a* (.Q + 

a41 a=i 

++Wiw+i3cv) i i r4.*qe~1S~.L.(&)rp,*'(5)aE + 

(2.31 

a=1,8=1 L 0 
_ 

(2.4) 
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In addition, the radius vectors of points of the bar Si with coordinates YIN yzi ys 

are, in the undeformed state, determined by the expressions (Fig. 2) 

(2.5) 

rt = il(-&+ yl,cOsy- 2/:31Sin r) $- i292l+ i3(Rl + yllsiny + y31~~~r) 

r2 =ij(-R2-yy12cosr -y32sinr) + Lyz.2 + i3 (- RI +y12s~n~-y32~os~) 

In what foltows, by assuming no difference in the nature of the vibrations of the bars 

in the &‘li $/3i and Ypty~i planes, we may consider fo simplicity that 

‘p, (E) = 9, CE) = (P,” (E) = 9,* (E) 

Using the notations of (1.12), we have 

for S, 

(2.6) 

(2.7) 

Ut n+a =: i2~=(~~t) + (ilsiny-i3cos~)y2,~pa' (y,,), Ula'n+B = Uln+a'B = 0 
Elst 

Ul@ = Uln+a*n+B = (i,sin T -i3cosr) 5 ~='(%)~~'(%)~% 

for S% 
0 

uBp=(- iI cost+ i3sinr)qcL(y32) + (i1siD.r + i3cos~)y,,qP,'(y,,) 

U2 nta = i,'p,(y3,)+ (ilsin7 + i3 co~~)y,~'p,'(y,,), U2a'ntB = Ugn+ueB = 0 (2.8) 

218, 

us 
aB = 

US 
n+a. n+B = 

(Wnr 3- i3 cost) 1 cp,'t%)'pB'(%) d% 

0 

In the calculations of (1.16) for the equations of motion (1.14) and (1.151, the inte- 

gration may conveniently be carried out with respect to the dimensionless variable 

Si = yJi/L, where 15 is the length of a bar. As a result, we have 

a1 IL = ma (ix cosy + i,sinr), a,= = ma(- ix cosr +i3sinr) 

alaB = aln+a,n+@ = m,a~L-1(i,sin~-i3cos~), ain+' = NZ"i2, 

a24 = a2n+asn+B = m, @pLwl(il sinr + i3 cosr), aias n+@ = apa,~ = 0 

ma = mN+ ma(i), rn*Q = mlma@ -f- malaP 

A 4 A a@ = A ntavn+B = mlA =I: 4 i *‘@ + m2gpa (1) (pB (1), Ai”’ W@ = ATa’ ‘= 0 

Gia =: gdi2, G,“+* = - iigln+a - i3gan+=, Gan+” = &glnt” - i3g2n’or 

gP+” = gla = ml (RItza + L co9 pz+a) + m2 (RI + L 00s r) Q), (1) 

g2n+a =gp = ml(R2na -+ Lsinm,") + m2(R2+ LsinT)rpa (1) (2.9) 
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g a = cos y gla -I- sin rg8, 
I‘(4 = g+=t *+B = 0 

r1 a, n+P = Aap (i3 ~0s 7 -. i, sin y), i’,“’ ntB = - Aa' (ig cos 7 $- i, sin 7) 

f&e0 = Gp+fl* nta = GapiS, (-&@a = (&n+h n+* = _ Ga$, 

G a@ = M,~~L-~ (I?, sin fy - 8% cos 7) 

G,“+fl* * = rln+Bt a = -. Aa@ fig cos y - i, sin y) 

GSn”k a -_ Ygn+8? d = Aa@ (i3 cos y -+ il sin r) 

A,’ = iIi,AI1” + izizA~~a + i&La - (iA + i&) fha (2.9) 

Aln+u = - (iliz + i&) A,,“‘” - (bit4 + i&J hxinia 

Asa = - ililAIla - iaizA~~a - i3ilA33a - (i,i3 -I- i&) http 
7Lta 

A% = - fixi2 + i&f Ate 
Rib n+a + (i& + i&J A%3 

AIla = sin yg,“, ha = - co9 ygsa, A13’ = + (cosrg1* - sin ygaa) 

neaa = ma (23, sin y - I?% cos y), Avan’a = _ + g,a, Assnta =12 f gla 

Q1 a,nc& = Q1’- B = _ + Aaa [(itiS + i&) COST + (i& f isid sin 2’1 
Q;d+6 = Q8n+a,@ = f A”@ [(iI& + i&) cos r - (i& + i&) sin ‘1’1 

QlaB = ililQllaa + i&Qaaae -j- idsQ3saQ - (id, + &id QKS’~ 

Qaa” = ililQlla’ + i&QsaaB + i3i3Q33a6 + (iA + 46) QIS@ 

QFa* n+fi = il&Q,yat fl+B + ieiaQ2F”t n+B + iSi3Q33n+a. n+@ + 

+ (iI& + isix) Qlcqa3 n+B 

Ql? = sin2 yAaB - cos 7 dlaB, Qssa@ = ~0.32 rA”@ - sin r &“B 

Q 
aB 

22 = A”’ - sin y do” - cos r dlaB 

Q1saB = sin r cos yA‘@ + $ [cosydsaB + sin rd,“@] 

QIP+‘=* n+B z A”” - co9 7 &‘=@, Q$+a* “+@ = A”@ _ sa r d,aS 

Q 
n+a, n+f3 

28 = - sin y d,“@ - cos 7 d,“@ 

Q 
ntn, n+p 

13 = $ [COS 7 C&T@ + sin 7 d,““] 

(ala’ = I.7 [ml (&@ + Lcos rm,4B) + ma (RI + L cos 7) Pj 

dz aS = L-’ [ml (fi2maB 4 Lsin rrnr@) + m2 (& -j- Lsin r) iae] 

where the following notations am used for integrals : 

1 1 

n= 2= s ‘P, (4 ds, n*= I- scp, (s) ds, 1” I= ’ va’ ($) ds 

0 
s 
0 

s 
0 (2.10) 
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1 

9, (4 ‘PB (4 ds, 
0 0 

I s S 

cp,'(o)cp,'(cs)d5, ma@ = :s ds ‘cp ’ (5)qg(a)da , \ \ 4 
0 0 0 0 

Moreover, in the computation of (2.9) the terms, in which the rotations of the cross 

sections of the stabilizer were included were neglected. 

From Equations (1.14) and (2.9), th e equations for rotation of the satellite about its 

center of inertia C referred to the X~X~Z~ axes, have the following form: 

- 2(09’ + O,O~) i h1311xa + 2wh i +33= - Aa27 y, + 
a=1 ==1 

n 

+ 2 (a32 - 022) Iz A23Oy,+= - 
a=1 

=il gPy;+= + 2% =z, L”y=’ - 

n 

Boa’+(A- C) 0.1~0~ + 201; i hasay, - 2 (co,’ + 0303) =tl &;+*~+a - 
a=1 

- 2 (co,’ - cam) 5 h23”+‘?7,,+= + 2~~3 =$l (41” - A33=) Y, - 
a=1 

-2(cIQ- 03~) =ix &3=x= + =gx if’%” + 202 fi Az=Y= - 
==1 

4=1 
a3 =zl (2A23”‘” $ gl”) Yka + (2.12) 

+ sin Y (V:l + 01Vt3 - m3Vc2) i nz.“x, - cos fr (V& + wlVca - WaVt3) X 
==A 

Ca;+(B- A) ~102 + 20,’ i A33=y, - 2 (01’-- ~a&) =gl Ax,“x= - 
==1 

- 2 (oz’ i- 01~03) 5 A23nt=y,,+a + 2~~2 4$1 (A,’ - Ana) y, + 
a=1 

n 

+ 2 (of - ox2) r: Alzn+=~m+= - 5 g2=&i+= + 203 i A3sayE= - 
‘Z=I a=1 a=1 (2.13) 
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In Equations (2.11) to (2.13), the following notation was introduced for new generaiised 

coordinates : 
(2.14) 

& = 4, + q=*, Ga+a = &+a + $&r Y, = 4, - Q$ Y,+a = (In+a - q;+a 

III scalar notation, Equation (1.15) has now the form 

i A”@x[ = Q, + Q,* - 2 sin y (V& + olVcs - o&‘cJ ma - 
B=1 

- sinr (Vci + df~3 - w3Vc2)-+- i; rn*@xp - 
B-1 

?a 

3 A=‘x,,,;; = Q,+a+ QnIe - 2ma (VC: + oJcl - olVcJ - 
&=I 

n 
- sinr(V& + oJc3--3Vc2) + Z m*@h+B + 

B=l 
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n n n 

+ ;tta%) x A”‘y, + 2 2 A”’ [sin rely,’ - cos dog+‘] 
&=l &=l 

(a=%, 2,....n) 

Thus we have obtained a system of equations, which describes the motion of the de- 

formable satellite as a system with a finite number 4n + 3, of degrees of freedom (A’ = 4a). 

In Equations (2.11) to (2.13) the component of the vector mc representing the principal 

moment of the gravitational forces acting in the central field of spherical Earth on the de- 

formable system of the satellite, is determined by the approximate relation [6] 

m,C-_-~~~(~+u)xk*dm-3~k*.(~c+sC’)xk* (2.16) 

where fOC is the distance between the center of attraction0 and the point C, p is the gravita- 

tional constant, and k’ is the unit vector in the direction of rOC, defined by 

k* = 8,i, + 8th + 6,i, (2.17) 

Taking the expression (1.12) for u into account, we have, according to (1.16) 

mgc z-$-k*x rdm 
‘7jc s 

-3+k*.hck*+-&k*x $ a”qo- 
rbC a=1 (2.18) 

iv 

-6-&k*. 8 h’g,xk” 
a=1 

For the problem ander consideration, we have from (2.18) the following expression for 

the projections of mCg on the 8xea x,z+;x,: 
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-. 6 -b- i [a2d3 (h2a” - h33a) y, -t b%&taX= -t 
rS 
oc u=1 

(2.19) 

+ (832 - 612) &3=x= - 8182A23 “+=Yn+=J 

m&g) =z: 3 +- (B - A) &a2 + P 

‘32 
z- 

i m"[40sn=+ 81&+=]- 
oc a-1 

The generalized forces in Equations (2.15) can be represented as 

Q,==Q',+F=+@= (a==i,..., N=4n) 

where Q$ F, and F,, and @=are the generalized forces due to the external forces, the 

elastic reactions, and the inelastic reactions of the bars. 

The generalized forces due to the external forces (particuIarly to the gravitational 

forces) can be obtained as the coefficients of variations of the corresponding coordinates 

in the expression for the virtual work done by the external forces which resulted in the 

virtual displacement &I of the points of the body only as the result of deformations of the 

stmcture. The virtual work of the gravitational forces over the dispiace~ent 6~ is deter- 

mined by the approximate expression 

I-3~.k*]k*.8udm- $jj(r++bdm (2.21) 

Since, by (1.12) 

we obtain from Equation (2.21). the following expressions for the Q(f) (CL = 1, 2, . ..) N), 

taking account only of the terms which are linear in the generalized coordinates qa: 

(2.22) 
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On the basis of (2.221, we have in (2.15) 

-+- dlas sin 7) yp + A”’ [(B 12 ~0.9~ y + aa2 sin2 7) q, + 2S,b, cosr sin ry, t 

_t 66183 @OS 7&h= - sin 7gP) j c?. 23) 
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+ dl aB sin r) x,,,p + ii@% [b+cos VP + d3 sin VI, + bJ,+plj - 

It should be noted that in Equations (2.11), (2.13), and (2.15) the inertia effects 
due to the translational motion of the body of the satellite are equilibrated by the compon- 

ents of the moments and generalized forces due to the action of the gravitational forces, 
which depend on the displacement of the center of inertia of the structure of the satellite, 

caused by its deformation. 

The analytic determination of the corresponding generalized forces due to all the other 

external forces (e.g., aerodynamic and magnetic forces, etc.) acting on satellite of complex 

configuration, requires specific knowledge of their form and structure, and is not treated in 

the present article. 

Let us turn now to the determination of the generalized forces F4 due to the internal 

reactions of the deformed stabilizers. Since the generalized coordinates q, introduced 

above are measured from the natural state of the body, the expression for the potential 

energy of the elastic forces can be represented as a quadratic form in the variables 141, 

and for this problem is determined by the expression: 

(2.24) 
a=1 @=l 

In (2.24) 

(2.25) 

where E is the modulus of elasticity of the material of the bars and I is the moment of 

inertia of transverse cross-sections of the stabilizers. 

Then, in (2.15), the components of the generalized forces due to the elastic reactions 

are equal 

F, + F,* = - 

F, - F," = - i caQyp, 
8% 

t;,,, - ha,: = - p$l capY,+p 
(2.26) 

where the coefficients caB can be cakulated if the modes of vibration of the stabilizers 

are known. 

The terms @,z in (2.20) are very important, since they determine the character of the 

damping of the free vibrations of the stabilizers. The generalized forces @oare determined 

from the internal damping in the material of the stabilizers as they deform and by the 
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structural damping. It is possible to use the basic hypotheses which are usually employed 

in the description of internal damping arising in the vibrations of elastic systems [6], in 

order to determine these forces analytically. However, it is easier to make use of experi- 

mental data on the determination of the decrements of the vibrations, if these are available. 

The projections of the vector o which occur in the system of equations of motion of 

the satellite are easy to determine if the following additional coordinate systems are 

introduced : 

1. An equatorial coordinate system O&&t, with origin at the center of the Earth 0, 

the axes O&t2 lying in the Earth’s equatorial plane, and O& being directed along the 

axis of rotation of the Earth towards its North Pole (Fig. 3). 

FIG. 3 

2. An orbital system of coordinates CZlW,, which moves with the center of 

inertia C of the satellite and is formed by the radius vector roC, Cz, perpendicular to the 

radius vector, lying in the plane of the orbit and positive in the direction of motion of the 

satellite, and by the binormal to the orbit Cz, (Fig. 3). 

3. Some auxiliary axes Cz,*x,* 23* ( moving with the center of inertia of the satellite) 

which coincide with C~1~e~3 axes of the structure when the axis of symmetry x1 of the 

body is oriented in flight in the direction of the axis Cz,, and which are rotated with 

respect to the Cx,qq, axes when the axis of symmetry of the body x1 is oriented in the 

direction of the radius vector rot (the axis Cz,) or in the opposite direction (Fig. 4). 

Depending on its structural arrangement and purpose, either orientation is possible for a 

gravitational satellite. If the orientation of the axes CZ~*Z,*Z~* with respect to the 

orbital axes is determined by the three angles : $-the pitch ; d-the jaw ; and cp - the roll 

(Fig. 4). and if the elements of the transformation matrix between the axes C~*I,*+* 

and CZ~ZZZQ and the direction cosines between the axes Cq*s,*s,* and Cz1z2z3 

are given by the tables 

x1* a11 

X2* a21 

x3* a31 

z3 

a13 

a2, 

as.9 

x1* 

X2* 

x3* 

011 

a21 

a31 

aI2 a13 (2.27) 
a22 a23 

a34 a33 
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then in Equations (2.11) to (2.13) and (2.15) 

Here the generally accepted notation is used: fi is the longitude of the ascending 

node of the orbit of the satellite, i is the inclination of rhe orbit, u = CJ.J+ + v is the srgu- 

ment of the latitude, u+ is the longitude of the perigee, v is the true anomaly of the 

satellite. 

In Equations (2.17), (2.19), and (2.23) the quantities ai are determined as 

(2.30) 

on the basis of Equations (2.27) and (2.28). 

If a gravitational satellite is provided with a special guidance or damping system, the 

equations of motion (2.11) to (2.15) must be supplemented by suitable differential equations 

which describe the process of guidance and dissipation of energy. 

In the present article equations of rotational motion are given in orbital coordinates, 

for a satellite provided with deformable gravitational stabilizers. The deformations of the 

rods are presumed to be small in comparison with their lengths and are determined by a 

denumerable set of generalized coordinates. The equations which have been presented 

make it possible to solve a number of interesting problems in the dynamics of gravitational 

satellites. 

Equations (2.11) to (2.15) permit the investigation of the effect of the motions of the 

end masses of the stabilizers and of the distributed mass of the stabilizers themselves, on 

the dynamics of a satellite, if the particular modes of vibration of the rods are specified, 

and the possibility of non-ideal attachment of the stabilizers to the satellite is accounted 

for. The effect of deformations of the stabilizers occurring as a result of solar heating of 

the structure [7] on the dynamics of the satellite may also be iavestigated. It is possible 

to estimate the stability and accuracy of orientation which can be expected from a passive 

gravitational satellite with flexible rods under the effects of external forces on the satel- 
lite. 

A class of problems of special interest deaIs with the stability of the operation of 

active damping and guidance systems on a gravitational satellite when the stabilizers 

deform. The investigation of such problems is simplified considerably, if small vibrations 

of the satellite are examined in orbital coordinates and, if consideration of the deformations 

of the rods is limited to only the lowest modes of vibration. For instance in [8] an investiga- 

tion is carried out of plane vibrations of a gravitational satellite with flexible stabilizers 

under the reactive moment of a preliminary damping system. 
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